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We investigate various 1D solid-on-solid (SOS) models using the transfer matrix
method. The main results of the paper concern SOS interfaces near an attracting
wall ( l ine) when the end points of the interface are fixed away from the wall ( l ine).
We obtain typical interface shapes in the macroscopic scale. If attraction of the
wall is strong enough, then a part of the interface is pinned to the wall ( l ine) and
the remaining parts of the interface form angles with the wall ( l ine) the contact
angles. Explicit expressions for the contact angles are derived. We show also that
for a certain range of parameters the models exhibit reentrant wetting and drying.
As a result the free energy of the SOS model as a function of temperature can have
up to three points of nonanalyticity. The fluctuations of the SOS interface are
investigated in detail. Quite unusual fluctuations are observed at the contact
points -the points where unpinned and pinned parts of the interface meet.

1. INTRODUCTION

The present paper is devoted to a detailed investigation of several 1D
Solid-On-Solid (SOS) models which invention is commonly attributed
to Temperley, see Section 5 of ref. 12. The models are interesting as simpli-
fied models of various physical phenomena, such as phase separation in
ferromagnets and binary liquids, or as a simplified model of polymer mol-
ecules.(13) In modern terminology, Temperley's original model is an SOS
interface (no overhangs) with the state space of height variables Z1, and
with only one end of the interface fixed. From the mathematical point of
view the original model is next-to-trivial—equivalent to a ID random

1 Dublin Institute for Advanced Studies, School of Theoretical Physics, Dublin 4, Ireland.
2 Dublin City University, School of Mathematical Sciences, Glasnevin, Dublin 9, Ireland.

KEY WORDS: Contact angle; interface fluctuations; large deviations; reen-
trance; wetting.

389

0022-4715/98/0100-0389$15.00/0 C 1998 Plenum Publishing Corporation



walk. What was, however, quite non-trivial is that using his model Tem-
perley succeeded in predicting the critical temperatures of various 2D Ising
models. Another important feature of the SOS models was discovered
much later—the interface tluctuations of 2D Ising models can be described
qualitatively by the SOS interface.(4)

The model was not taken seriously by a wide audience at first (during
the 60s and the 70s). However, the interest in the model rose significantly
after a modification of the 2D Ising model that has a roughening transition
below the Curie temperature was proposed and solved by Abraham,(1) and
it was further shown that in the SOS limit the roughening transition persists.
Subsequently, various SOS models were solved directly ( that is, without
prior solution of the corresponding Ising models), see refs. 5 and 6, and it
was found that the SOS interfaces provide qualitatively correct description
of the interfacial properties of 2D Ising models. Later on the SOS model
was used in investigations of macroscopic properties of interfaces as a testing
ground for various phenomenological theories, such as the Wulff construc-
tion and the Young equation, see refs. 7, 8, and 10, which further popularized
the model.

So far, the most efficient, in our opinion, method for treating SOS
models with two fixed ends (and, possibly, with some additional constraints)
was based on an equivalence of ensembles, see ref. 10. This method,
however, has two drawbacks. First, in its conventional form the equiv-
alence of ensembles method allows one to obtain only the leading term in
the asymptotic expansion of the free energy. Second, the predictions of
microcanonical and canonical ensembles may be different for some observ-
ables (that is, the ensembles may simply not be equivalent at a certain
level), then the method can not be applied at all. Fortunately in the case
of SOS models it is possible to work directly in the microcanonical ensemble.

Although there already exists a rather large number of research and
review articles devoted to SOS models a careful analysis of their prob-
abilistic aspects is missing. In order to fill this gap several SOS models are
analyzed from a unified point of view in the present paper. Some of the
known results are rederived and new results are obtained using the transfer
matrix method.

The paper is organized as follows. In Section 2 we consider the SOS
interface with left and right ends fixed at (0; L) and ( N ; R ) , respectively.
We derive there the leading term in the large N asymptotic expansion for
the partition function, the distribution of fluctuations of height variables
around their mean values, and the joint distribution of an arbitrary pair of
height variables, see Eqs. (2.6) and (2.17).

Section 3, where we study the SOS interface near an attracting wall, is
the central part of the paper. Employing the transfer matrix technique we
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obtain an integral representation for the partition function of the model,
see Eqs. (3.11) and (3.12), and calculate the large N asymptotic expansions
for the partition function, see Eqs. (3.13), (3.15), (3.16), and (3.20). In
Section 3.4 we use the integral representation of the partition function to
find the typical (macroscopic) shape of the SOS interface that has its end
points fixed above the attracting wall, see Eq. (3.35). If the attraction of the
wall is strong enough then a part of the interface is pinned to the wall while
the remaining parts of the interface form an angle with the wall—the contact
angle. The explicit expression for the contact angle is given by Eq. (3.14).
The distributions of fluctuations of the pinned and unpinned parts of the
interface, see Eqs. (3.39) and (3.40), are derived in much the same way as
the distributions in Section 2. What needs significantly more effort and
yields quite a non-trivial result, see Eq. (3.46), is the investigation of fluc-
tuations near the contact points—the points where pinned and unpinned
parts of the interface meet.

Section 4 is devoted to an investigation of the SOS interface in the
presence of a pinning line (no walls). Using the transfer operator we obtain
integral representations of the partition function, see Eqs. (4.3) and (4.4).
Then we derive the typical (macroscopic) shapes of the interface, see
Eqs. (4.11) and (4.12), explicit expression for the contact angle, see
Eq. (4.5), and the distribution of fluctuations of the unpinned and pinned
parts of the interface and of the contact points. One of the striking dis-
tinctive features of the interface in the absence of the wall is that the corre-
sponding contact angles are independent of the parameter J.

In Section 5 we discuss the results obtained in Sections 2-4. In par-
ticular, we claim there that the SOS interface has a cusp at contact points
in all scales (except microscopic, where the interface is "shapeless"). Con-
trary to the beliefs present in physics literature rounding of the cusp does
not take place in any scale.

Note on terminology: When describing an expression like
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we call a—the amplitude, y—the exponent, and r(x)—the rate function.

2. SOS MODEL WITH INTEGER HEIGHTS

The state space of the height variables in this version of the SOS
model is Z1. The joint distribution of the sequence of height variables
hN-1 = { h j }

N - 1
j = 1 is given by



where h jeZ1, y' = 0, l,...,N; and h0 = L,hN = R (the boundary conditions).
The partition function ZN, L, R is given by

where

The large N asymptotic expansion for the remaining integral over a> can be
found using the steepest descent method, see ref. 11. For the (most com-
monly used) boundary conditions L = [ 1 N ] , R = [rN], (where [x] denotes
the integer part of x) we obtain

and
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where S(hN; R) is the Kronecker symbol (that is, S(k; l)= 1 if k = l, and
8(k\ /) = 0 if k +1, for any integer k, 1).

Using the integral representation

one can perform the summation over h1,..., hN consecutively

where w* = ig(l-r),



The mam properties of the function g(l — r) are summarized in the following
lemma, which proofs can be found in ref. 11.

Lemma 2.1. The function g(x) is an increasing, infinitely differen-
tiable, and odd function on (— oc; oo).

Using Eq. {2.6) we conclude that the free energy per degree of freedom
f / , ( l - r ) i s given by
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2.1. The Distribution of Height Variables

To calculate the distributions of the random variables hx note that

Let L=[1N], R = [rN], X = [ y N ] , and Y = %N + T N + o ( ^ N ) (more
complicated dependence of L, R, and X on N requires only minor technical
modifications). Then using the steepest descent method, see ref. 11, one
obtains

where cof(x) = /£[(/-/)/}>] and w2*(/) = /g[(/-r)/( 1 -y)].
In the next lemma we find the concentrating value for h[rN]/N, that is,

the maximum point x* of the rate function
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Lemma 2.2. The function 3tr(x) is a strictly concave function on
( — i ; i ). It attains the global maximum at the point Ry= ( 1 — y ) / + jr.

Proof. One has

since the saddle points cof(x) and co$(x) are solutions of

and

respectively. Therefore, the equation ^'(/) = 0 is equivalent to

Due to the monotonicity of g(x) the only stationary point of &y(x) is given
by

Finally,

and Lemma 2.1 yields &"y(x)<Q. Therefore the stationary point /* is the
point of global maximum, and 3ty(x) is a strictly concave function on
(-00500) . |

Obviously

of the product Zx L YZN - X , Y , R .We also show that the (infinitely differen-
tiable) function R r ( x ) is strictly concave, therefore, the distribution of
h [ y N ] / N indeed concentrates around xy*as N->i. Having found xy*we will
study fluctuations of h[yN] around Nxy*.
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hence, for Y=\_x*N + rN] and X = [ y N ] Eqs. (2.6) and (2.11) yield

The following local limit theorem, therefore, holds true for the sequence of
the random variables hN as N-+ GO

where v= — <£"(&>*). Equation (2.15) was derived previously in ref. 9 using
a somewhat different technique.

The joint distribution of the random variables hj and hk where j < k,
j= [yW], k = [r;N~\ (or, indeed, of any finite set ( h j } J e A ) can be calculated
in much the same way. First note that

Using Eqs. (2.6) and the steepest descent method, see ref. 11, we obtain the
local limit theorem

The corresponding two dimensional central limit theorem is stated as
follows



That is, for any positive e and 6 the rescaled interfaces N lhlNy-±, ye [0; 1 ]
belong to the £-vicinity of the function h(y) if A' is large enough, except for
a set of atypical interfaces which probability is less then 8. In this sense the
typical interfaces hN_l of the model (2.1) merge into the function h(y) in
the continuum limit.

Let us also mention a result concerning the large deviation prob-
abilities for the random configuration {hk}%~f. Let rj(x) be a continuous
function defined on the interval [0; 1 ], and rj(0) = 1, r/( 1) = r, then
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In particular the correlation coefficients of the random variables Py =
limN->ie[LN] are given by

where y < rj. Note that there is virtually no correlation decay in the
model—macroscopically separated random variables ^yN-\ and C[V^v] nave

non-vanishing correlation coefficient.

2.2. Macroscopic Shape of the Interface

Equations (2.14) and (2.15) provide detailed description of the local
properties of the SOS interface (2.1). Our goal now is to describe the global
shape of the interface (2.1) in the macroscopic scale (that is, in the con-
tinuum limit). Using the inequality (exponential tightness, see ref. 11)

one obtains

where Y* = L( 1 - y] + Ry. Therefore, for any s > 0,

as N -* oo, where



as N-*Q, where Pr[ • | hlyN-± = [/jV] ] is the distribution (2.1) conditioned
by hirtf] = [xN]. That is, the typical interfaces hN_l realizing the large
deviation h^yN-^ = [/JV] merge into the function i/^r) in the continuum
limit.

3. SOS INTERFACE NEAR AN ATTRACTING WALL

The state space of the height variables in this version of the SOS
model is the set of non-negative integers Z+ = {0, 1, 2,...}. The joint dis-
tribution of the sequence of height variables hN_l = {hj}^1 is given by
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where/^(x) is given by Eq. (2.9), and the infimum is taken over the set of
continuously differentiable functions C1 such that i^(0) = 1 and ^(1) = /•.
The integral \1

0 fp(^'(r)) dt is the total free energy associated with the inter-
face \!>(T).

Note that the rate function 2%v(x) given by Eq. (2.12) can be also
expressed in terms of a constrained infimum of the total free energy. Using
the arguments from the proof of Lemma 2.2 one can show that

where as above the infimum is taken over the C1 functions \]/( •): [0; 1 ] -»
( — 00; oo) such that ( j / ( 0 ) = i, \ l / ( 1 ) = r. The infimum is attained at the
piecewise linear function

Using Eq. (2.10) and (2.20) one can conclude that for any e>0



where fy eZ+ ) V/; J>0, b>0, and h0 = L, hN = R (the boundary condi-
tions).

and, once k>max(L, R),
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3.1. The Integral Representation for the Partition Function

The partition function 0Nt L% R is given by

It can be expressed in terms of the transfer operator P acting in l2

Indeed, Eqs. (3.2) and (3.3) yield

where (•, •) is the usual scalar product in 12, and 6L = {8(j\ L)}^=0 e l2.
It is convenient to introduce truncated operators Pk via

An almost verbatim repetition of the arguments used in ref. 11 shows that

where {An}* + \, and v<£) = {v(*}J}'j=0, n = l,2,...,k+1 are the eigenvalues
and the associated eigenvectors of the matrices
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It can be shown by the methods used in Appendix that when
\ —e~Pb the eigenvalues of the matrix Wk are given by

where <pn e [0; In) are solutions of

The corresponding orthonormal eigenvectors are given by

j=1, 2,...,k+ 1; where

and e1,2 = exp{±[BJ + log(l-e-Bb)]}.
When e - B J < 1 — e - B b only the first k eigenvalues are given by

Eq. (3.7) (With the associated eigenvectors given by Eq. (3.9)). The remain-
ing k + 1-st eigenvalue is given by (up to an irrelevant exponentially small
with k correction)

The corresponding eigenvector is given by (up to an irrelevant O(e >*)
correction)

It turns out that the solutions of Eq. (3.8) are such that ei<pk are vir-
tually uniformly distributed over the unit circle (cf., Lemma A2 from
Appendix). This fact together with Eqs. (3.4)-(3.7), and (3.9) yield in the



limit k -> oo the following integral representations for the partition function
(3.2). When e-fj^l-e-pb,
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where A(a>) is given by Eq. (2.5), v(a>) is given by Eq. (3.10), and ZN L R

is the partition function of the SOS interface (2.1).
When e-pj<\-e-pb

where

is the contribution from the point spectrum of the operator F.

3.2. The Asymptotic Expansion for the Partition Function

When e~PJ> 1 — e~pb, the large N asymptotic expansion for the
integral JN,L,R can be derived using the steepest descent method, see
ref. 11. Indeed, in addition to the poles at w = ±//?/the integrand ofJNLR

has an extra pole at o>0= — ilog£2 . However, when e~/ij> 1 —e~^b the
extra pole is in the lower half-plane and one can still deform the original
integration contour (the segment \_-n\n~\) into the steepest descent path
without crossing the poles. For L=[W], R = [rN] we obtain

where K>*+ =ig(l + r), see Eq. (2.7), and v(x) is given by Eq. (3.10).
Consider now the case e~^J< 1 —e~^b. In this case the integrand in

JN,L,R has a pole in the upper half-plane at eu0 = i[BJ+log( 1 — e~P b ) ] ,
and if the saddle point a>*+ = ig(l + r) is above or coincides with w0 the pole
plays quite a non-trivial role, as we shall see below. The condition a)*^=a>0

implies

or, taking into account Eq. (2.7),
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Remark 3.1. It will become clear below that tan 0c introduced in
Eq. (3.14) is t a n ( - ) of the contact angle—the angle between the wall
hj•= — l , y = 1,..., N — 1 and the inclined parts of the interface (2 .1 ) in the
macroscopic scale.

If / + r < tan 0c then the saddle point w + is below the pole cu0 and the
integral JN,LiR is evaluated as in the case e~/!J> 1 -e~^b ( that is, the
original integration contour can still be deformed into the steepest descent
path without crossing the pole ca0). Therefore, Eq. (3.13) is also valid for
e~flj< 1 —e~ph provided l + r<tan 0c. For eu*. ̂ w0 one has

Hence if / = 0 or r = 0

where e = e ( l , r )> 0 when l + r < tan 0C. While if min( l, r) > 0 the asymptotic
expansion for 0N, L, R is given by

Depending on the exact values of the parameters l, r, Bj, Bb, either the first
or the second term in the rhs of Eq. (3.16) gives the leading term in the
asymptotic expansion for @N , L , R . We call Phase I the range of parameters
where 2N,L,R dominates over the contribution from the continuous spec-
trum. The complementary region is called Phase II. The dominance inter-
change which occurs at the hypersurface (phase boundary)

gives rise to a nonanalyticity of the infinite volume free energy per site
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Fig. 1. The b- T phase diagram for the SOS interface near an attracting wall. The values
of parameters are l = r = 0.1, J= 1 ( le f t ) and l = r = 0.5, J= 1 ( r igh t ) . In Phase I the interface
has contact with the wall at a macroscopically large number of points. In Phase II the inter-
face is the straight line joining the boundary points L = [ IV] and R = [rN]. The circles show
the coexistence line in the case l=r = 0.

Fig. 2. The b — T phase diagram for the SOS interface near an attracting wall. The values
of parameters are l = 0.1, r = 0.12, J = 1 (left) and l = 0.1, r = 0.2, J = 1 (right). The Phases I
and II are the same as in Fig. 1. The circles show the coexistence line in the case l = r = 0.
Note that in the case l = 0.1, r = 0. 12 the line 6 = const can cross the coexistence line at three
points.

For instance, in the case l = r the critical height l,.,. is given by

and

See Figs. 1 and 2 for b — T phase diagrams.



3.3. Macroscopic Shape of the Interface: Unpinned State

We have
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For the purpose of later use we introduce the notation rcr(l) to denote
(for l < tan 0c) the critical value of r—the unique solution of the Eq. (3.17)
with respect to the variable r.

Remark 3.2. The existence of the limit N-» oc for the free energies
f N ( B ) implies that taking the limit N-* <x in the systems of the size [yN]
with the boundary conditions L = [yIN], R= [yrN] yields the same phase
diagram for all y > 0, and, in particular, the same critical value /•„.(/) for the
parameter r. Therefore, taking the limit N -» oo in the systems of the size
[yN] with the boundary conditions L = [IN], R = [ r N ] yields a phase
diagram with the critical value of r given by y„.(//}') i f Iy tan 0 c

(otherwise r does not have a critical value).
Let, now, l + r> t an 0c, that is the pole ca0 is in the upper half-plane

and is below the saddle point co%. The integral J N , L , R can be represented
as

where the second term is the residue of the integrand at to = a>0 times 2ni,
and CN is the steepest descent path. Note that ^NiLfR (the point spectrum
contribution to the partition function) and the pole contribution in
Eq. (3.19) cancel each other in Eq. (3.12). The integral in Eq. (3 .19) is
evaluated by the steepest descent method, which yields the expression given
by the rhs of Eq. (3.13). The asymptotic expansion for @ N , L , R is now
readily obtained from Eqs. (3.12), (3.19), and (2.6). In the case l, r>0 it
reduces to



It is easy to see from Eqs. (3.11) and (3.13), and the results of Sections 2,
that if e ~ B J > \ — e ~ P b the large N properties of the interface (3.1) are
essentially the same as in the case considered in Section 2 (that is, when
e~PJ>\— e~Pb the temperature fluctuations overwhelm the attraction of
the wall). Therefore below we consider only the case e~ftj^ 1 —e~*lb.

We consider first the boundary conditions L = [IN], R is finite and
fixed, and choose l>tan 9C, see Eq. (3.14). As N-> oo the distribution of a
random variable h^yN^/N, where ye [0; 1], concentrates at a certain value
X = x* which, as Eq. (3.21) suggests, is the maximum point of the rate func-
tion ®r(x) of 0w\,L,iXN-\®N-w\,iXNi,K on [0; «)• Since (l + x)/y^1>
tan 0c for x ^ 0, the leading asymptotic term of the partition function
^[yjv], i, [xJV] is given by an expression analogous to Eq. (3.20), namely,

where co* = ig[(l — x)/7~\, see Eq. (2.7). Depending on the exact value of x
the partition function 0N [)>Ar]j ixffl R is given by an expression analogous
to either Eq. (3.15) or Eq. (3.20). Namely, if x>X, = 0 ~V) tan Bc then
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where e-** = i g [ x / ( 1 ~ y)] and

if X<Xs- Therefore, the rate function &y(%) is given by

see Fig. 3, where
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Fig. 3. The typical interfaces realizing large deviations h(..s} = [XN] for the SOS interface
(4.1) (left) and the corresponding rate function .#!°'(/)= ~,^f..(x) -$//<(/) (right). The values
of parameters are /?•/=!, /?i = 0.65, y= j, /= 1, r = 0. The interfaces abc and adec correspond
to x = i and X = 1/4, respectively. The interface ac is the equilibrium shape interface. The dotted
line marks the critical deformation Xs, below which a part of the typical inteface- the segment
ec—is pinned to the attracting wall. The broken line on the right figure marks the point of
nonanalyticity of 3?',.°'(;£). The dots on the left from that line show the analytical continuation
of 3t'r

a>(x)—the rate function of the free SOS interface (2.1).

and

The proof of Lemma 3.1 can be found in ref. 11.

Lemma 3.1. Let l> tan 0c, then the function R y ( x ) is a strictly con-
cave and continuously differentiable function on [0; oo). It attains the
global maximum at the point X*= (1 — y)l.

To find the macroscopic shape of the interface we use the inequality
(exponential tightness, see ref. 11)

where a > 0, and 0 < CE < oo for e > 0. Moreover a and CF do not depend
on k. Therefore, cf. Eq. (2.19),



as N->oo. Thus, if one end of the interface is raised sufficiently high
( />tan 0C] the (typical) large N behavior of the interface (3.1) is virtually
indistinguishable from the case of the "free" interface (2.1).

3.4. Macroscopic Shape of the Interface: Pinned State

Consider now the case l< tan 0c. As above, we first have to find the
value of x maximizing ̂ (x)—the rate function of the product 0^^ /,, [Xtr\
®N-\.YN-\,W\.R. Now the leading asymptotic term of &\_YN-\,L,[XN^ is given
by (cf. Eqs. (3.16) and (3.20))
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That is, in the continuum limit the typical interfaces of the model (3.1]
merge into the function

since according to the above inequality for any e > 0

if l< y tan dc, and x < y^l/y), see Remark 4.2, otherwise

The partition function 0N^iyN^ ^xN-jrK is still given by Eq. (3.24). Therefore
the rate function 3ty(x) is given by

when 0<Y<l/tan tC;



when y 0 ^ y ^ l - 1° the above expressions y0 is the unique solution of
yrcr(l/y) = (1 - y) tan d, (note that y0 e [(1 + 1/tan 0c/2; 1 ]), the functions
R 1 ( X ) and R2(x) are given by Eqs. (3.26) and (3.27), respectively, and

Fig. 4. The typical interfaces realizing large deviations h(..N> = [/#] for the SOS interface
(4.1) (left) and the corresponding rate function j?!°'(/) = -AW + PWl (right). The values
of parameters are BJ = 3/4, Bb = 3/2, y = 3/4, / = 3/4, r = 0. The small dots mark the critical
deformation Xs = (1 —}') tan 0c below which the right wing of the typical interface is pinned to
the attracting wall—the segment ec. The big dots (on the left picture) mark the critical defor-
mation below which the left wing of the typical interface—the segment fg—is pinned to the
attracting wall.
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when 1/tan 0c ^ y ̂  y0; and

The proof of Lemma 3.2 can be found in ref. 11.

Lemma 3.2. Let l<tan 0c then the rate function R(X) given by
Eqs. (3.32), (3.33), and (3.34) has the following properties. When 0 < y <
1/tan 0c, {%.,(%) is strictly concave, continuously differentiable and attains
the global maximum at % = l~ y tan 0C. When 1/tan 0 c ^ y < 1, &y(x) is a
decreasing and continuous function on [0; oo).
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Summarizing the above, one concludes that in the case / < tan 0C the
maximum point of the rate function &y(x) on the interval [0; oo) is given by

Although in the case /< tan$ c the rate function &$y(x) is not
necessarily concave it always consists from two concave pieces and has a
unique maximum, see Fig. 4. We have (exponential tightness, see ref. 11)

where a > 0, 0 < ce < oo (for s > 0) do not depend on k. Using elementary
inequalities, the same as in Eq. (2.19), we conclude that

That is, when e fj< 1 — e pb, l< tan dc, and r = 0 the typical interfaces of
the model (3.1) merge in the continuum limit into the function

in the sense of Eq. (3.29).

3.5. Large Deviations of Pinned Interface

The rate functions (2.12), (3.25), and (3.32)-(3.34) show that the large
N asymptotic expansions for the probabilities of rare events are significantly
different in the cases e~^J< 1 —e~^b and b = 0. The most noticeable dif-
ference between (2.12) and the rate functions found in the present section
is the non-analyticity of the latter, see Figs. 3 and 4. The origin of the non-
analyticity is the competition between different classes of the configurations
hN. Consider first the case /> t an# c when the rate function is given by
Eq. (3.25).

The proof of the following lemma can be found in ref. 11.

Lemma 3.3. Let / > t a n # c and x>Xs> then the typical interfaces
realizing the large deviation hiyN-i = [%N~\ merge in the continuum limit
into the function



According to Eqs. (2.22) and (3.37) the typical configurations of the
interfaces (2.1) and (3.1) (with L = [W] and R is finite and fixed) realizing
the large deviation /j[yjv] = [/N] merge into the same function vx(p) in the
case x>Xs- Since such configurations are bound to ignore the attracting
wall, the rate functions (2.12) and (3.25) (which are determined by the total
"weight" of the typical configurations realizing hivN^ = [#./V]) coincide for
X>Xs- The analytical continuation of &y from x>X* onto X<XS (that is,
the rate function (2.12)) is determined by the total "weight" of the con-
figurations which for %<Xs stn<' merge into the function vx(p) in the con-
tinuum limit. However the typical configurations of the model (3.1) realiz-
ing /![xAr| = [/W] in the case x <Xs merge into the function wx(p) given by
Eq. (3.38). That is, the typical configurations realizing the event
^OAM = t/^1 for X<Xs are partially pinned to the attracting wall. These
typical configurations must have a larger total "weight" then the configura-
tions merging into vx(p), and, therefore, the rate function $y(x) given by
Eq. (3.25) is larger then the rate function (2.12) for x<Xs- This naturally
give rise to a non-analyticity of &r(x). Although, as we mentioned above,
the analytic continuation of 3ty(x) from %>Xs onto X<Xs can be inter-
preted as a total "weight" of a certain class of interfaces, the analytic con-
tinuation of t$7(x) from x<Xs into X > Xs does not correspond to any class
of interfaces.

Remark 3.3. Note that the typical interfaces of the model (31)
realizing HirN^ = [xN] always merge into a unique function (even for
X = xs)- The transition from the partially pinned interface wx(p) to the
unpined interface vx(p) is "continuous," that is, wx,-e(p) -*• vXs + e(p) as E \. 0
uniformly over />e[0; 1]. The rate function 9ty(X) although non-analytic
at Xs, is continuously differentiable at x = X s .

3.6. The Distribution of Height Variables

In the case 1> tan 0C the fluctuations of the interface (3 .1) are the same
as the fluctuations of the interface (2.1). Indeed, it follows from Lemma 3.1
and (3.25) that the fluctuations of h[y N] around NX*are controlled by the
rate function R2(x)< the same rate function as (2.12). Therefore P^h^^ =
[X*N + T^/N]) is given by Eq. (2.15).
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in the sense of Eq. (2.23). Let 1>tan0 c and x<Xs> then the typical inter-
faces realizing the large deviation h^^ = [/N] merge into the function



Note a drastic—discontinuous on the macroscopic scale—reduction in
the fluctuations of
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Consider now the case e ftj ^ 1 — e fb, 1 ̂  tan dc and r = 0. For
ye [0; 1/tan 0C) fluctuations of h^N-± around the concentrating value NX*
are controlled by the rate function RI(X)- The asymptotic expansion for
@lyN-},L,\_x;N+*jN-i is given by

where v= — <P"(i\o%£,2}> and

Therefore, using Eqs. (3.21) and (3.15) one obtains

For ye (1/tan 0c; 1 ] the fluctuations are controlled by the rate function
R3(x)- The leading-order terms of &l?NlL.k and @N-[yN^k,R, where k is
finite and fixed, are given by

and

Therefore, see Eq. (3.21), when ye(1/tan0c; 1] and k^O



which is sufficiently close to the pole o>0= —i log £2 to make the standard
steepest descent theorem
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at y = I/tan 0c. Our goal now is to find the scale in which the reduction
happens in a continuous manner, and to describe the transition in detail.
The main difficulty is the calculation of the integral J[yN+n^N-].L,x> see
Eq. (3.11), where y = I/tan 6C, L = [/#], and x = \.pffi]. Indeed, the
integrand of J{_YN+V^N],L,X has a saddle point at

where

inapplicable. However, all we need to do to obtain the correct asymptotic ex-
pansion is to apply the steepest descent method to the integral J[yN+>iJif\,L.x
(that is, to apply directly the argument which yield Eq. (3.41) for suf-
ficiently regular functions /(z)).

We use the saddle point method in the following (not immaculate, but
concise) form. Deform the original integration contour into the one passing
via the saddle point and orthogonal to the imaginary axis at the saddle
point (applying the residue theorem if a>% is above the pole a>0). Introduce
a new integration variable y via a> = a>%, + N~l/2y, and make standard
estimates, then for y = //tan 0c, L = [ W], and X — \.P \/N~\ one obtains

where v= — <£"(/log £2),



if 6^ < 0. The value of X(0) can be obtained by passing to the limit ($„,-+().
The remaining integral can be expressed in terms of the error function.
Indeed,
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if <$„. >0, and

where we used the identity

to get rid of the denominator (S2 + y2) -1. Therefore

The conventional steepest descent method yields, see ref. 11,

where y = 1/tan 0c, L = [ IN] , % = [p ^/N~\, and v = - <P"(i log <^2). Note that
for/5 >0only Z^yN+^^-^ L, [Py/v] makes a contribution to the leading-order
term of 0^N+?^ L> lp ^.

The partition function &N-iyN+vJJr\,x.R is given by



If/ is kept fixed as N -> i only J[yN+ri^/N~\.L.x makes a contribution
to the leading asymptotic term of &iy\ + q ̂ /N-\. L,x and taking into account
Eq. (3.43) one obtains
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up to an irrelevant exponentially small with N correction. Therefore for
)' > 1/tan 0c and p > 0 one obtains

where X is a non-negative integer. Note that lim^^ h[Nl/Ua0f + ̂ ^ is an
improper positive random variable.

Summarizing Eqs. (3.44) and (3.45) one concludes that the positive
random variable lim^^^ N ~ { / 2 h ^ N i / t a n 0 c + ̂ ^ has an atom at the origin
and

for p > 0. The "thin structure" of the atom is given by the distribution of
the improper positive random variable

see Eq. (3.45).
Equations (3.45) and (3.46) provide comprehensive description of the

interface fluctuations in the direction orthogonal to the wall. Investigation
of fluctuations in the direction parallel to the wall is a significantly more
delicate problem. Here we only present some intuitive arguments which
allow one to derive the distribution of fluctuation of the first-contact point.

Denote jc the point of first contact of the interface and the wall, that
is, jc = mm{j: hj = 0}. For j>jc the interface is localized around the wall
and has bounded fluctuations according to the one-sided exponential dis-
tribution (3.40), exactly as the interface (3.1) with boundary conditions
L = R = 0. Therefore fy/^/TV-> 0, as N->ao, (or j>jc. The distribution
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function of the random variable l im^^^TV l/2hLNI/taugc + y^nTl can be
represented as

Comparing the last expression with Eq. (3.46) one concludes that

Thus

has normal distribution with mean 0 and variance

The last expression coincides with the variance announced in ref. 3.

4. SOS INTERFACE NEAR AN ATTRACTING LINE

The state space of height variables in this version of the SOS model is
Z1. The joint distribution of the sequence of height variables
hN_l = {hj}?Jil is given by

4.1. The Integral Representation for the Partition Function

The partition function ENi ^ R is given by

where hj e Z1, Vj; J, b> 0, and h0 = L, hN= R (the boundary conditions).
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Analogously to the previous section introduction of a transfer operator and
analysis of its spectral properties (see Appendix) yield the following expres-
sion for the partition function

where

is the contribution from continuous spectrum with symmetrical associated
"eigenvectors,"

is the contribution from continuous spectrum with antisymmetric associated
"eigenvectors" and

is the point spectrum contribution. Therefore, if LR^O (that is, the end
points of the interface are fixed on the same side of the pinning line)

where

while



when LR ^0 (that is, when the end points of the interface are fixed on the
different sides of the pinning line, forcing the interface to cross the pinning
line). Above we used the notations
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where a = (l-e-pb)(epj + e-flj).
In all cases the partition function (4.2) is a sum of two terms: the con-

tribution from continuous spectrum (an integral) and the contribution
from point spectrum S>N,L,R- Which of the two terms gives the leading-
order term in the asymptotic expansion for the partition function depends
on the exact values of the parameters /, r, fiJ, fib, (where / and r determine
the boundary conditions via L = [W] and R = [rN]). We call Phase I the
range of parameters where 3>N, L, R dominates over the continuous spectrum
contribution. The complementary region is called Phase II.

4.2. The Asymptotic Expansion for the Partition Function

Similar to the previous section the large N asymptotic expansion fat
the partition partition function £N, L, R is derived differently depending on
whether the saddle point eu^ = ig(\l\ + r\) of the integrands in Eqs. (4.3)
and (4.4) is above or below the pole aj0 = i log^1 . The condition
co*l = / log77, implies

or

If |/| + |r <epb—l, then the saddle point is below the pole ca0 and the
integration contour in Eqs. (4.3) and (4.4) can be deformed into the
steepest descent path without crossing the pole o»0. Using the steepest
descent method, see ref. 11, one obtains

when 1r>0, and

when Ir < 0, where s = e(l, r) > 0 as long as |l| + \r <e^b-\.



If \l\ + \r\>eftb — l, then prior to application of the saddle point
method the residue theorem must be applied to deform the original integra-
tion contour into the steepest descent path. Note that the residue contribu-
tions to the integrals in Eqs. (4.3) and (4.4) equal -^NiLtR- Therefore

when Ir < 0.

When \l\ + \r\<eftb — l the equilibrium position /* is still given by
Eq. (4.11) if /, r>0 and ZNLiR dominates over &N,L<R, that is, if the
system is in Phase II. If the system is in Phase I, that is, if the main
asymptotics of ZN,LiR is given by 3)N,L,R (as, e.g., in the case r = 0,
|/| <efb - 1) then interface's equilibrium position is given by
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when Ir > 0, and

4.3. The Distribution of the Height Variables

The distribution of the interface fluctuations can be found using the
identity

and Eqs. (4.6)-(4.9) in much the same way as in Section 4. In particular,
the concentrating values for the random variables HlrN^/N—the equi-
librium shape of the interface in the macroscopic scale—are given by
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when l, r > 0, and by similar expressions for other signs of / and r. Note
that since |/| + \r <tanT9 ( is a necessary condition for £N,L,R~~^N.L,R>
the interval [1/tan 0C; 1 — r/tan 0c.] is non-empty. It is clear from
Eqs. (4.10) and (4.12) that in Phase I a macroscopically large part of the
interface is pinned to the line h = 0, while in Phase II interface is unpinned
(that is hj; = 0 only for a few j's). The function e^ — l is the tan( . ) of the
contact angle—the angle between the inclined parts of the interface and the
pinning line h = 0. The b— T phase diagrams for the SOS interface (4.1)
were plotted on Fig. 5.

In Phase II the fluctuations of the interface are asymptotically the
same as in the case of the interface (2.1) with the identical boundary condi-
tions and, hence, their distribution is given by Eq. (2.15). In Phase I the
fluctuations of the inclined parts of the interface are qualitatively the same
as the fluctuations of the inclined parts of the interface (3.1). Their distribu-
tion is given by Eq. (3.39) (with v= — <£"( i log/ ; , ) ) when > > e ( 0 , 1/tan 0C)
and

Fig. 5. The b — T phase diagram for the SOS interface near a pinning line. The values of
parameters are 1 = 0.1, r = 0.12, J = 1 ( left) and l = r = 0 . l , J=1 (right). In Phase I the inter-
face has contact with the line at a macroscopically large number of points. In Phase II the
interface is the straight line joining the boundary points L = [IN] and R = [r/V].

when y e (1 - r/tan 9C; 1).



The fluctuations of the interface in the vicinity of the contact point
y = 1/tan 0C can be derived in much the same way as the similar fluctuations
of the interface (3.1). For y = 1/tan 0e, L = [IN~\,x = [p ^/N], and p>0
one obtains

^[j-JV + Cv/fi].!, X
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When ye (1/tan 0C; 1 — r/tan 0C) a short calculation (analogous to that
yielding Eq. (3.40)) yields

where v= —&"(i log n1), while

if p< 0. Also, up to an exponentially small correction

Therefore for y = 1/tan 0C
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if p > 0, and

if p< 0.
If x is kept fixed as N -» i then

Summarizing Eqs. (4.14) and (4.15) one concludes that the random
variable limjv_00 N~ll2h^N+i^-^ has, an atom at the origin, and

The "thin structure" of the atom is given by the distribution of the
unproper random variable

see Eq. (4.15),

5. DISCUSSION AND CONCLUDING REMARKS

5.1. Phase Diagrams at Low Temperature

Typical b — T phase diagrams for the models of Sections 3 and 4 were
plotted on Figs. 1, 2 and 5. As a function of temperature T = l / B the
free energy (corresponding to the interface near an attracting wall, see
Section 3)

can be analytic for all T>0, if the attraction of the wall, described by the
parameter b, is small. It can have (only) one point of nonanalyticity, if the
attraction of the wall is sufficiently strong. Finally, the free energy can have



Hence, an arbitrary order derivative of b(T) at T=0 is zero, and the
coexistence line bends down for small T if 1e(0; 1/2). The downward direc-
tion of the coexistence line is clearly due to the energetic cheapness of the
entropy s(E) associated with the partially pinned interface (that is, the
small magnitude of the derivative s'(E) in the vicinity of the ground state
energy). Of course, the energetic cost of the entropy associated with the
pinned interface itself is rather high, what is energetically cheap is the
entropy associated with the inclined parts of the partially pinned interface,
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two or even three points of nonanalyticity, if E(£} = J \L — R\—the energy
of the shortest interface joining the left and the right boundaries—and
E(^ = J(L + R)-b(N-l)—the energy of the totally pinned interface
hj- = 0,j=l,...,N—l—are approximately equal. The location of the
coexistence line at T=0 is, of course, completely determined by the
energies E($ and Eff and is given by b = 2Jmin(l, r).

The main features of the low temperature behavior of the coexistence
line can be seen from the low temperature expansions for the "free
energies" associated with pinned and unpinned interfaces. Consider first the
case L = R. The "free energy" associated with a pinned interface

has the following expansion at T=0

while the "free energy" associated with an unpinned interface

has the low temperature expansion

Therefore for small T the coexistence line b( T) is given by



where tje ( — 00,00) for ye [0,1), and rje [ — 1/tan 0C; 1 — 1/tan 0C] for
y=l. Section 4 contains comprehensive description of the continuum limit
(5.2) for the case y= 1 (macroscopic scale), see Eq. (3.36). In a similar way
it is possible to investigate the continuum limit (5.2) for ye [0; 1). It is suf-
ficient to consider only the boundary conditions L = [lN],l^Q, and R = 0.
Below we describe the results of the investigation.

For ye(1/2; 1) the typical interfaces {A/}jLi merge in the continuum
limit (5.2) into the function
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which are always present if / > 0. Similar argument can be used to explain
the low temperature behaviour of the coexistence line in the case l ^ r.

The low temperature behavior of the coexistence line in the case of an
interface near a pinning line is the same (within the approximation in the
above formulae). This is due to the fact that only unpinned parts of the
interface determine the main terms of the low temperature asymptotics for
b(T) — b(0) (although 6(0) depends crucially on the pinned part of the
interface but it is the same for the wall and for the line).

5.2. Interface Shape at Contact Points

Consider continuum limits

Therefore in the scales corresponding to ye(1/2, 1) the interface (3.1) is
deterministic (does not fluctuate), and it has a cusp at the first-contact
point.

For y = l/2 the interface fluctuations do not vanish as N -» oo, as
a consequence the limit (5.2) exists only in distribution. This limit is a
random function

where K is a normally distributed random variable with mean 0 and
variance v = — l<P"(i log £2)/tan3 0C. Note that the fluctuations do not affect
the shape of the functions h(K\rj). The only effect of fluctuations is a ran-
dom shift of h(0)(ri) along the horizontal axis, while the shape of the inter-
face remains the same as in the case ye(1/2, 1).



For ye(0, 1/2) the limit (5.2) does not exists as a proper random
variable, since the fluctuations of N~yhUN/l&nec+tlN1^ grow unboundedly as
N -» oo in that case. However, if we are interested only in the shape of the
interface, and the interface location is irrelevant to us, it is reasonable to
consider the continuum limits

where jc is the point of first contact of the interface with the wall. The con-
tinuum limits (5.4) exist for all ye (0 ; 1/2] and coincide with Eq. (5.3).
That is, the shape of the interface in the scales corresponding to ye (0, 1/2]
is the same as in the case ye (1/2; 1), in spite of the fluctuations.

Finally, if y = 0 then the limit (5.4) exists only in distribution and
{s(J)}jL -a, is a microscopic scale trajectory of a random walk. Therefore
the interface is, in some sense, shapeless when y = 0.

Conceptually the most important conclusion of the above discussion is
that the interface has a cusp at a first-contact point in all scales except
microscopic (where the interface is shapeless). Contrary to the opinions
which can be often found in physics literature interface rounding does not
take place in any scale.

To solve the spectral problem for the matrices ftk we first solve the spectral
problem for the inverse matrix ftk ' and use the facts that the matrices flk

and ftk
l have a common set of eigenvectors and if X / 0 is an eigenvalue

of ftk
l then A"1 is an eigenvalue of ftk.

One can represent ftk as the following product
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APPENDIX. SPECTRAL PROPERTIES OF THE MATRICES t\k

The (2k + 1) x (2k + 1) matrices fik, k=1, 2,...; are given by

where

are diagonal matrices, and

822/90/1-2-28
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The matrices Dk
 { are given by

The matrices Lk ' are given by

where £k is the (2k + 1) x (2k + 1) identity matrix and Mk is given by

Therefore

where

and a = (1 -e~Bb)(eBj + e~ B j ) .
On introduction of a new vector X = {%,} *= _k such that

v —/>-Pb W; O)./. /_ i,. A,X1 — e \i/h l — —K,..., K
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the equation Bky = ly, where l= {Ll}
k

l=-k simplifies to

When - 1 # + 2 the solution of (A3) with the initial condition X _ k , x -k+1 is
given by

where

(note that x1 +x2 = A, x1x2= 1). The first equation in (A3) allows one to
exclude X - k + 1 and to transform the first equation in (A4) to

On substituting Xo and X-1 given by Eq. (A6) in the second equation in
(A4) and on substituting the expressions for Xo and X1 in the last equation
in (A4) one obtains

where



426 Patrick

The last equation in (A3) and Eq. (A7) yield the equation for the eigen-
values {/l,}^*1 of the matrix Bk which can be factorized as

Therefore the problem of finding the eigenvalues of the matrix Bk reduces
to solution of the following two equations

where

Note that for BJ > 0, Bb > 0 one has

and r i 2 e ( 0 ; e ~ / > J ) if e-pbe(0; 1/2).
Usually the equations of the type (A8) and (A9) are investigated using

the so-called graphical analysis which would yield the following results.
The 2k+ 2 solutions {£,. = e'v'},2tt2 of the equation (A8) and the 2k+ 2
solutions {C/}?^2, of the equation (A9) satisfying |C,| = 1 are distributed
on the unit circle uniformly enough to assure that

as k-* oo, for any function/(r) continuous on the unit circle |z| = 1.
Although the graphical analysis of Eq. (A8) is very simple the (careful)

graphical analysis of Eq. (A9) is rather cumbersome. It turns out that it is
possible to obtain an asymptotic estimate for the sum in the l.h.s. of
Eq. (A 10) (and, in fact, a much sharper one than that given by Eq. (A10))
without using the graphical analysis at all. We explain the main steps of the
alternative method below.

First we give a rough description of the location of the roots of the
equations (A8) and (A9). The proof of the next lemma is omitted. It is not



entirely trivial, but rather lengthy, and can be found in the complete
version of this paper.(11)
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Lemma A1. The equation (A8) has 2k+ 2 solutions {^,}jk
=\2

satisfying \£,\ = I, /= 1, 2,..., 2k+ 2. The equation (A9) has 2k + 4 solutions
{C/}^!4 such that \£,\ = l,l*k+l,k + 3 and

if

and |C k + l| = |C t + 3l = lif

Now it is possible to describe the eigenvalues {/l,-}^!*1 of the matrix
6k in terms of the solutions {£/}^lt2 and {C/}?tt4 of the equations (A8)
and (A9), respectively. We assume that the solutions {£,i = e"/>l}:f=\2, cp,e
(—7i', ?r] are ordered according to the principal values of their arguments,
that is,

Analogously, we assume that the solutions {(/>,}]kj[* are ordered according
to the principal values of their arguments, and the solutions having identical
arguments (like the possible real positive solutions) are ordered according
to their absolute values.

Note that the points £ = + 1 and C = ± 1 are always solutions, and any
solution £7^ 1 or C/ 1 has a pair £~l or £~' , respectively. Therefore

Analogously,

Investigation of Eq. (A3) shows that the solutions £== — 1, C= — 1 are
spurious, that is, A = — 2 is not an eigenvalue of the matrix Bk. These solu-
tions appeared as a result of algebraic manipulations (namely, multiplication
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of the equation X k - 1 = (h — e pj) Kk by (xi — x2)
2, which is a multiplication

by zero when x2= ±1). The solutions £ =1,£=1 are spurious as well
unless

when £ = 1 is a triple zero, that is, C* +1 ~ C* + 2 = C/t + 3 = 1 •
Each pair £,, £2k + 2-1( =£/"'), l=1,•..,£ and C1, C2*+4-/( =£,"')>

/= 1,..., £ + 1 give rise only to a single eigenvalue A and a single eigenfunc-
tion vf associated with L Therefore, according to Eq. (A5) the eigenvalues
{Ay}^!' are given by

To find the eigenvectors associated with the eigenvalues {<y^"[2 note that
if x2 satisfy Eq. (A8) then Eq. (A7) can be rewritten as

that is, X k - 1 — —X-k + h / = 0> \,...,k — 2, due to Eq. (A6). Moreover, if x2

is a solution of the equation (A8) then Eq. (A6) yields Xo = ® and, hence,
the second equation in (A4) yields x\ = ~X-\- Therefore, the eigenvectors
associated with the eigenvalues {^• = £J + £j~1}j=l are antisymmetric and
are given by {%,,}k, _k, j= 1, 2,..., k; where

Xj, o = 0, and Xj, i = ~Xj. - / , /=1, 2,..., k.
A short calculation shows that

where we used Eq. (A8) to get rid of high powers of £y. Thus the ortho-
normal (real) eigenvectors of the matrix Bk associated with the eigenvalues
{^}*=i are given by
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Consider now the eigenvalues {A/ = (,_ / t + (/_
lfc}y

2it + i' where £, are
solutions of the equation (A9). Note that if x2 is a solution of the equation
(A9) then Eq. (A7) can be rewritten as

that is, X k - i = X-k + h / = 0, 1,••• , k — 2; due to Eq. (A6). Moreover, if x2 is
a solution of the equation (A9) then Eq. (A6) yields (A. — a)eB bx 0 = 2x-1
and, hence, the second equation in (A4) yields X i = X ~ i - Therefore, the
eigenvectors associated with the eigenvalues {^J}^k

=
+

k\.l are symmetric and
are given by
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j = k+l,k + 2,...,2k+\.
Since £ f c + 1 £( '7~ 1 ; 1) (for any /?/»0, fiJ>Q if k is large enough) one

has

where the O(k) estimate is uniform over /. Therefore the normalized eigen-
vector M/t +1 is given by



where the O(l) estimate is uniform over/ since ^_k is a solution of the
equation (A9). Therefore the (real) orthonormal eigenvectors \|/y associated
with the eigenvalues A.j,j = k+l,k + 2,..., 2k; are given by

where

and
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The solutions {£/}*=! belong to the unit circle |£| = 1. A short calculation
shows that

Now we are ready to prove a stronger version of the estimate (A10).

Lemma A2. Let/(z) = £^L _« aiz' be an analytic function on a ring-
shaped region (R + S)~l <\z\<R + S, where R > 1, 8 > 0. Let {£,,} f=\2 be the
solutions of the equation (A8), and let {£/}/=t2 be the solutions of the
equation (A9) satisfying |C/| = 1, /= 1, 2,..., 2k + 2. Then

where the function/(2) = Z/°l i (a1 + a_/) z1 is analytic on \z\<R + d.

Proof. We prove only Eq. (A15) the proof of Eq. (A 14) is analogous.
Since
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connecting coefficients of the algebraic equation

our strategy is to obtain explicit expressions for Z/i|2C" using the rela-
tions

with the sums of powers sm = £*=, z" of the solutions { z , } *= l of this equa-
tion.

The relations (A16) applied to the equation

yield

Since for any solution f of the equation (A17) the point £ ' is a solution
as well, one has

Taking into account

one obtains

The Cauchy inequalities for the coefficients of the Laurent expansion of the
function f(z)
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where

yield

and
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